home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
CD School House 10
/
CD School House - Education and Games (10.0) - Wayzata Technology (1995).iso
/
mac
/
DOS
/
MATH
/
MAFIA2A
/
MATHUTL.HLP
< prev
next >
Wrap
Text File
|
1992-10-01
|
3KB
|
69 lines
╔══════════════════════════════════════╗ (C) Copyright 1986-1990
║ MATHUTL.EXE - Math Utilities program ║ Zvi Shippony
╚══════════════════════════════════════╝ (818) 990-0134
For options 1,2,3 - enter any expression in the variable: X
Expression is any legal combination of: +, -, *, /, **, !, (, )
and any of the following functions:
ABS, INT, EXP, SIN, COS, TAN, COT, LOG, LN, FACT or ! (Factorial)
SQRT, SINH, COSH, TANH, ARCSIN, ARCCOS, ARCTAN, ARCSINH, ARCCOSH, ARCTANH
And the "Special Functions" :
Z(x) { Riemann's Zeta function }
G(x) { Gamma function, (IF x is an integer then x! = G(x+1)) }
BJ(n,x) { Bessel Function of the first kind, J(n,x) }
BY(n,x) { Bessel Function of the second kind, Y(n,x) }
BI(n,x) { Modified Bessel Function of the first kind, I(n,x) }
BK(n,x) { Modified Bessel Function of the second kind, K(n,x) }
SBJ(n,x) { Spherical Bessel Function of the first kind, j(n,x) }
SBY(n,x) { Spherical Bessel Function of the second kind, y(n,x) }
$$$
** Note:
PI is a reserved name and will be interpeted as Pi = 3.14159265358...
Example (options 1 - 3): Sqrt(3.0**X+12.25)-Exp(-Sin(X+1.0))
Example (options 1 - 3): X - Int(Tan(X)+4.123)!
$$$
Option 4:
To compute a finite or infinite sum you need to use the SUM() function.
The argument of the SUM function is any legal expression containing a
running index letter (I,J,K,L,M or: N). (Default index is: J) .
You have the option to let the index run to 'Infinity' by specifying: 'Inf'
or: 'Infinity' for the index's limit. The actual limit will be: 32767 .
Example: SUM(1.0/n^2) (for n = 1 to Infinity) will produce a result
which is an approximation to Pi*Pi/6.0 ( 1.64493406684823.. )
Example: SUM(X^k/k!) (for k=0 to Inf) computes Exp(X) for a given X.
Example: LN(SUM(1/k!)) (for k=0 to Inf) should give you 1.0
Example: BJ(0,X)^2+2*SUM(BJ(k,X)^2) (k=1 to Inf) should give you: 1.0 for
any X . This is a known identity involving J(n,x) (Bessel).
** NOTE: You can use more then one SUM() expression. For example:
SUM(1/n^3) / (Sqrt(SUM(X/k!)))
$$$
Option 5:
Evaluate any leagal expression, given its argument(s). Note that there
is no X or Y or any variable name here, all arguments are explicit.
Example: Sqrt(3.0**6.2+12.25*BJ(2,4.5))-Exp(-Sin(SBY(3,2)*BK(1,6.2))
That's all folks ...